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We consider a s 
.J 

stem 
tic medium wi 

of equations describing the flows of an incompressible viscoelas- 
a rheological equation of state containing derivatives of the stress 

tensor with respect to time, The initial system of equations for two-constant models of 
the medium is a quasilinear first-order system. Correct formulation of the problem 
under initial conditions requires the imposition of certain restrictions on the system 
matrix llf. These restrictions, which are necessary to ensure the evolutionary charac- 
ter of the system, are imposed on the stress tensor in our case, We shall concentrate on 
one-dimensional motions for which the requirement of evolutionary character renders 
the system hyperbolic. It is then possible to indicate sufficient conditions which ensure 
the uniqueness of the continuous solution of the one-dimensional steadystate boundary 
value problem. 

Hyperbolic systems of equations of viscoelastic fluid dynamics have discontinuous 
solutions for certain models (e. g. that of Oldroyd PI ). Discontinuous flows of mater- 
ials with memory in which the stresses are functionals of their “strain history” are dis- 
cussed in ls]. We shall consider the discontinuities in Oldroyd’s model when the differ- 
ential relationship between the stress tensors and straining rates is given, A necessary 
condition for the existence of discontinuities is formulated. The problem of evolution 
of a velocity jump in one-dimensional motion is considered, 

1. The conditlonr of evolutionary character. Let a viscoelastic 
incompressible fluid move in a plane channel 0 < z ( 6 or in a half-space ‘Z > 0. 
We assume that all the parameters of motion except the pressure are functions of the 
sin 

8h 
le space coordinate z and of the time f. 

e equations of motion are in this case of the form 

~+v*E?.&z.gL_ :,py-F,=O 

at% * aT,z --_- 
01 p az 

-FF,=O 

Here P* (1) = - 6’~ / Bx and P, (t) = -o’p/@can be regarded as given functions. 
The last equation of (1.1) makes use of the incompressibility condition 
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bv,/bs - 0, v, - v, (a 

The corn 
.B 

onents of the stress tensor are interrelated by six rheological equations. We 
shall cons1 er: 

Oldroyd’s “contravariant” model, 

Tii + h(dTtj/at+VkTii, k-Vi,kTkj-Vj, kT,k) = q(Vi,j + Vj,,) (1.2) 

Oldroyd’s “covariant” model, 

2’~ -I- h (aTG / at + VkTtj, k f Vk, jTik + vk, iTkj) = tl (Vi, i f Vj, i) (1.3) 

a model with a derivative in the sense of Jaumann, 

TG + h (6’TG I b’t $- VkT<j, k - %rTkj - OjkTtk) = 9 (Vi, j + vj, t) (1.4) 

6% = i/S (vit j - vj, i) 

Equations (1.2) - (1.4) are written out in Cartesian coordinates. The tensor I’,j is 
related to the total stress tensor Pii by the equation pij = - pO,j + T,j. 

The system consistin of the first two equations of (1.1) together with one of the 

!:i%so$ ?~a~~,m~~~~f._,‘T~z, T ’ T 
1 I1 3) or (1 4) is closed with respect to the eight unknown 

T provided that u (t) is a given 
function of time. The last equation ?(l,?; th: defines the trans:erse pressure distri- 
bution. The condition V, * 0 means that fluid can be either injected or sucked out 
through the planes bounding the stream. 

Let us introduce the vector function f = (vx, v,,, T,,, Txr,c T,z, TV”, Tvr, T,,). 
This enables us to write the complete system of equations for each model in matrix 
form (9, 

$+ A(f);+ b(f, z, t)=O (1.5) 

The matrix A for each of the systems in question is a nonsymmetric eighth-order 
matrix which depends linearly on the vector f ; the vector b is of the form 

Quasilinear system (1.5) must be evolutionary, i.e. the problem with initial condi- 
tions for this system must be correctly formulated. The example given in [C] indicates 
that the equations of a viscoelastic medium may be nonevolutionary; we therefore begin 
our analysis of system (1.5) by deriving the conditions of evolutionary character. 
Recalling the considerations presented m [‘I, we assume that the condition of realness 
of the roots of the characteristic equation 

IA - L!?I =O 

where E is a unit matrix, is necessary for evolutionary character. 
The roots of Eq. ( 1.6) for system (1. l), (1.2) have the following values 

(1.6) 

l ) The matrix A can be multiplied by the vector f according to the rules of multipli- 
cation by a vector column. 
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Hence, the necessary condition of evolutionary character of system (I,. 1) , (1.2) is of 
the form 

T,, frllh> 0 (M 

Similarly, in considering Eq. (1.6) for system (1, l), (1.3) we obtain the following 
values for the roots: 

System (1. l), (1.3) is therefore evolutionary only if 

r)th-- ‘I,(Tti+ Tyy-I- 0, >O (MO\ 

In the case vtl = 0, T,, = T,, = ‘Tyr = 0 the condition (1.10) becomes 

This inequality differs from (1.8) in the fact that it contains $,instead of ~ZZ . 
This is a consequence of the fact that every solution of the roblem of motion of ‘the 
covariant model in the case ly = 0, Txt, = T,, = Tyr = 8 can be obtained from the 
solution for the contravariant mddel under the same assumptions concerning the motion 
by interchanging the quantities TZZ and -TZZC, in the latter solution. 

On considering the characteristic equation for system (1. l), (1.4) we obtain the follo- 
wing expressions for the roots: 

The condition of evolutionary character of system (1. l), (1.4) which describes the 
one-dimensional motion of the model with a Jaumann derivative is of the form 

Tzz - V/n(Tn+ T,,J -?/L\‘+ 2vih>0 (1.12) 

Inequalities (1.8), (1. lo), (1.12) for-the correspondin media must be fulfilled 
throughout the flow region at all instants. If this is not B e case, we must alter the 
rheological model at least in the region where the initial equations become nonevolu- 
tionary, The quantities which dicta& the evolutionary character of a system must 
themselves be determined by solving a certain mixed problem. A system can therefore 
enter the nonevolutionary region because of unsuitably chosen initial or boundary con- 
ditions. 

In the case of linear viscoelasticity the conditions of evolurionary character are ful- 
filled automatically. This means that nonevolutionary character is a consequence of 
the kinematic nonlinearity of the tensor derivative with respect to time. 

2, Uniausns,# of the solution of th@ mixed problem. Let us 
assume that the necessary conditions of evolutionary charadter are fulfilled. An impor- 
tant factor in 
form. Since J 

roving uniqueness is the possibili 
r 

of reducing the matrix A to diagonal 
e matrixA is nonsymmetric, it 0110~s that it can be reduced to dlago- 

nal form if the maximum number of linearly independent eigenvectors of the matrix 



Some general properties of the equations of fluid dynamics 33 

coincides with its order. We infer from (1. 7), (1.9), (1.11) that characteristic equation 
(1.6) has multi 

P 
le roots for each of the models under consideration. This requires direct 

consideration o the problem of the maximum number of independent linear eigenvec- 
tars which yields the required result for each of models (1.2)-( 1.4): the required number 
is eight, Hence, the matrix A is reducible to diagonal form and system (1.5) is hyper- 
bolic. 

Let us consider the two solutions fl and fs which satisfy (1.5). We assume that 3; and 
f, and their first derivatives are continuous in the domain R (0 (t (T, 0 <z (6). 

Substituting first fl and then fp into (1.5) and subtracting the result of one substitution 
from the other, we obtain 

;+A(f,)$+[A(f,)-A((f,)l~+b(zJ. fd--b(z,k fa)=O (2.1) 

(u = f1- fl) 

If the body force vector F either depends linearly on the velocity or is a given func- 
tion of 2 and t, then the vector b depends linearly on f. The matrix A also depends 
linearly on f, so that we have the relations 

Atj = cijkfk t 4, 

Here Cijhc dij are constants and &r, ml are functions of Z and t. 
Hence, we can rewrite (2.1) as 

$+ A(f,);+B(z,t,z)u=O, Bti=ci&+lii (2.2) 

Equation (2.2) can be regarded as a homogeneous linear equation in u. Our subse- 
quent constructions are based on the method described in [6] in connection with linear 
hyperbolic systems. Linear replacement of the unknown function reduces the matrix to 
diagonal form. 

Let u = HU, where the columns of the matrix Hconsist of the linearly indepen- 
dent eigenvectors of the matrix A. Carrying out some simple transformations, we now 
obtain the following equation for U : 

$+G~+KU=O (2.3) 

of YlZern~trF Z’Zd” 
is a diagonal matrix whose diagonal consists of the eigenvalues 

, 

%+A%) 

Let us make yet another substitution, setting U = eatW, where cz > 0. This implies 
that W satisfies the equation 

agtG $+(K+aE)W=O (2.4) 

where E is a unit matrix. 
Let us take the scalar product of (2.4) and 2W.and make use of an identity valid for 

any vector W and any symmetric matrix C , 

2 Gz, 
( W) = ; (GW, W)- (2 w, W) 
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This yields 

&V’s) +; (GW, W) + (MW, W) = 0, M = 2K -2 + 2aE (2.5) 

It is cleat that if we choose a sufficiently large a> 0, then the quadratic form 
(M W,W) is positive-definite. Next, integrating (2.5) over the domain R, we obtain 

i Ti W2dz f (GW, W)z,dt -5 (GW, W),,dt + i i (MW, W)dzdt=O (2.6) 
0 0 0 0 0 0 

Let W = 0 for t = 0, i.e. let an initial condition be imposed on f , and let the 
inequalities 

(GW, W)z=o< 0, (GW, W),=s a 0 (2.7) 

hold at the channel boundaries, 
Equation (2.6) then implies that W - 0, and uniqueness has been proved. 
For ‘2 ‘= 0 we specify k boundary conditions linear in the vector t , 

(f, $1 = x1(t), * . -9 (f, %) = %l!O 

Here gr,. . ., 
given functions. 

qk are linearly independent and can be functions of t ; x,(t) are 

These boundary conditions are homogeneous for the vector u , 

0% sd = 0, *.- -, (u, qd = 0 

Replacing u by its expression in terms of W, we obtain the following boundary con- 
ditions for W: 

(W, Q1) = 0, . . ..I (w, Qk) = 0, Qi = H’qt (2.8) 
Here H”is the transpose of the matrix 11. The minimum number of conditions of the 

form (2,8) for which (GW, \17)_~o-z<0,is equal to the number of positive eigenvalues 
of the matrix A ( fl) , including multipfe eigenvalues L5]. Similarly, the minimum num- 
ber of boundary conditions of the form (2,8) for z = 6 is equal to the number of nega- 
tive eigenvalues of the matrix A (fr), including multiple eigenvalues. 

We note that if the number k is known, then the choice of the independent vectors 
qi.is not completely arbitrary. In order for the quadratic form (GW, W) to have a 

fixed sign, the components of the vectors Q , , and therefore the components of ‘I, , 
must conform to certain conditions. In fact, considering (2.8) as a system of linear 
equations in the components of the vector \\I, we obtain 

W = y,‘h (Ql..., Qd+ . . . -t-y,,_k Y,,_h-(Q1 ,..., Q,J 

_Here the vectors VI,... \v,_, form the fundamental system of solutions; in our case 
n = 8. The quadratic form (GW,W) is now reducible to a form defined on the 

( n - k )-dimensional vectors‘7 = (Y1,..., v,,_~), 

In order to ensure that the latter quadratic form is of fixed sign on all the vectors 7, 
we must impose certain conditions on the corner minors of the matrix 11 (G\V,, vi) (/ 
which depends on the vet tors Qi . 

The characteristics of quasilinear systems of equations themselves depend on the 
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boundary conditions, and their slope is not known in advance. However, in certain 
cases, e. g. for systems (1. l), (1.2) or (1. l), (1.3) which describe the flow for Oldroyd’s 
models it is possible to determine the slope of the characteristics by solving the equation 
for T,l in the case of model (1.2) or the equations for T,, T,, and ST, in the case 
of model (1.3). All of these functions satisfy the same equation 

(2.9) 

whose solution is of the form 

T(z, t)=e+F (z-So,(t’)tW) 
0 

In this case Formulas (1.7) or (1.9) can be used to compute all the characteristic roots 
Ti (2, t). System (1. l), (1.4) has stronger nonlinearity than do systems (1. l), (1.2) or 

(1. l), (1.3). It Is therefore difficult in this case to find the characteristic roots as func- 
tions of z and I in explicit form. 

For example, let us consider the uniqueness of the solution of the following problem. 
Let a viscoelastic fluid corresponding to model (1.2) flow in a channel with rmpermea- 
ble walls. Let us assume that vy = 0, Tty = T,, = TV,== 0. The quantity Z’_,, satis- 
fies (2.9) and is in this case given by T,, = To (z) c-‘/h. We now have the following 
system of linear equations for the quantities vx and T, : 

The unknown vector has two components, f = (v,, T,,). The characteristic values are 

-fc, c= y~,,++)~ 1 t 
-‘It 

z 
1,2 - 

For the qtiadratic form (CW,W) we obtain 

(GW,W) = eezat (~1% - ,vzr)(Tzxt - T,,) / p 

In view of the above considerations we must specify one bounda condition for z = 0 
and one for z = 6. It is clear that if we specify the condition of a X esion at each wall, 
namely v,= = vlt = vX, then (GW. W) vanishes and the solution is unique. The solu- 
tion of this problem in the case TO (z) = const, F, = 0 under the boundary conditions 
vx (9) = V, (6) = 0; is given in 1‘1. 

The latter paper does not deal with the uniqueness of the generalized solution of 
system (1.5). This problem is of interest, since strong discontinuities are possible in a 
viscoelastic medium. 

3. Dftcontfnuou8 flow, of an Oldroyd fluid. In order to find the 
relations at the discontinuities we reduce the “principal part” of the system of equations 
of three-dimensional flow for Oldro d’s contravariant model to “divergent” form. The 
s stem 
Y 

of equations of motion toge x er with the system of rheological equations rrans- 
ormed with the aid of the equations of motion and me continuity equation becomes 

$ (Pu,) + (PW’ti + Pbr - Tush k = f-‘Fi 

4 ( TG + pv*vj) + [ ( T+jvk - TkPt - Tt Pi + Pvlvjvk) 
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=- $T~+v,(-p,j+pFj)+vj(-PP.~+PFt) (3.1) 

Since the fluid is incompressible, only tangential discontinuities for which,fVn) = 0 
are possible, so that {p) = {T,,,,}. 

Let us consider the discontinuities such that {T,,,} = 0. The pressure then varies 
continuously through the discontinuity surface. We aLso assume that the stresses Tij, 
the pressure gradient, and the external body forces are bounded in the neighborhood of 
the discontinuity surface. Integrating Eqs. (3.1) over a narrow layer containing the dti- 
continuity surface defined by the equation cp (z~, t) = 0 and making the layer mick- 
ness go to zero, we obtain 

a’-# /at {PVi> + ‘p, II bvivk - Tik) = 0 (3.2) 

a(P / at { Ttj + PViVj} + VP, k {T@k - TkjVt - T<kVj f pvivjvk - 

- t (Vi8kj f Vjbkj)} = 0 

Let us divide Eqs. (3.2) by IF’(PI and multiply the last equation of (3.2) by nj, where 

nl = 991 IIVCPI’ are the components of the unit vector of the normal to the disconti- 
nuity surface. Carrying out contraction over the subscript j , we obtain 

-_PC{Vi} = {To} nk,-((PVn{V~}--(Tij} nj) C = Vn{Tij) nj-(Trm + q/h) {“i) 

cc v,+‘a’p ( I VT I at 1 
where C is the velocity of propagation of the discontinuity surface relative to the med- 
ium . The latter equations imply that 

{Tijnj}* = (Tnn + ‘1/ 1) P {Vi>” 

for {V} # 0. This is possible only if 

T,, i- rlli > 0 (3.3) 

if the inequali J’n, + Y/h < 0 is fulfilled throughout some region occupied by 
the moving liqui 2 , then the above statements imply that velocity discontinuity surfaces 
cannot exist in the flow. 

We note that in the case of one-dimensional motion the condition (3.3) coincides 
with (1.8) which is necessary if the system is to be evolutionary. The initial system of 
equations is then hyperbolic. 

We can show that fulfillment of (3.3) is necessary in order for the system of equations 
of three-dimensional flow of model (1.2) to be evolutionary. The direction of the vec- 
tor n must be arbitrary in this case. 

If (3.3) is fulfilled, then the velocity of propagation of the discontinuity surface is 
given by 

c = + [(T,,, + rl/h) / p I’h 

The function cp (X1, t) which vanishes at the discontinuity surface satisfies the 
“eikonal equation” 

(a~/ at)’ = (VVCP f ?Tijq,t ‘P, j lP+ ~(V(PYI PhIa (3.4) 
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We can show by conventional methods that the saon 
with the characteristic surfaces of the initial system o F 

discontinuity surface coincides 
equations. This statement, which 

is alwa 
ity of x 

s valid for linear systems is in this case a consequence of the “weak” nonlinear- 
e system of equations under consideration. 

Let us assume that {V} = 0, so that {T,j} ni = 0 and therefore (p,,} = 0. In 
this case c = 0 and the quantity p,,’ can experience a discontinuity at such a surface 
which moves together with the particles constituting the medium. This quantity repre- 
sents the stress acting on an area with the normal n’,where njnf’ = 0. This fact can 
be verified by m~tiplying the last equation (3.2) by nj’ and contracting over i- 

Thus, two types of discontinuities are possible in the medium under consideration 
under condition (3.3). A discontinuity surface of the first type ropagates with a non- 
zero velocity relative to the medium and represents the locus o !. jumps in the tangent- 
ial component of the velocity and in the components of the srress tensor. A surface of 
the second rype does not propagate relative to the medium, and constitutes the locus of 
jumps in the components of the stresses at the areas orthogonal to the discontinuity sur- 
face with the exception of the component of this vector in the direction n. The compo- 
nent along this direction is continuous, since the symmetry of the stress tensor implies 
that {Pnt) n = {p,) n’ = 0. 

In contrast to gas dynamic flows, discontinuities in nonsteadystate motions of a visco- 
elastic fluid cannot arise out of continuous flows; the re resent the development of some 
initial discontinuity. This fact is established below or fy td!e case of one-dimensional mo- 
tion . 

Now let us consider the special case of one-d~emional flow in a plane channel or in 
a half-space. The discontinuities occur at the characteristics of system (1. l), (1.2). 
The characteristics of the first type at which velocity jumps can occur satisfy the differ- 
ential equations 

f = u* (4 f c, c= [+(T*,+# (3.5) 

The characteristics of the second type, at which only the quantities T,,, T,, TV,,, 
can experience discontinuities, satisfy the equation 

dz / dt = %W (3.6) 

Applying (3.2) to the case of one-dimensional flow, we can show that the following 
relations hold at the characteristics*of the first type: 

Relations (3.7) imply that all quantities are continuous at the first-type characteris- 
tics provided that {V) = 0. 

In order to investigate the evolution of the jump {v,) let us consider the following 
system of two equations closed with respect to the quantities vX and Tu : 
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Introducing the unknown vector function f = (t$, !I’,), we can rewrite (3.8) in the 
form 

By linear replacement of the unknown function u = H t f , 

we can reduce system (3.8) to diagonal form, 

,$+G $+Su+h=O (3.9) 

Here h does not depend on u, and the matrices C and S are of the form 

Applying the jump-taking operation to Eq. (3.9), we find that 

-$ (v,, = F; (t. t){v& F+ (z, t) = - -+- +++(,++)$I (3.10) 

at the characteristic dt I dt = vz -+ c. 
Here 

is the operator of total dIfferentia~on with respect to time along the characteristic. 
At this characteristic we have {ua} = 0. Integrating (3.10) under the initial condition 
{“@I lt,t, = (Vg)0, we obtain 

t 

(v.J = (v~)~ exp ( F+ (z, (0 t’) dt' 
L 

to 
(3.11) 

In integrating F, we must replace I by z+ (t’) in (3, lo), where I,. (t’) is the solu- 
tion of the differential equation 

dz,- 
df' - v* (0 + c @+, f) 

under the initial condition z+ = z,, for t’ = 1,. 
Similarly, at the characteristic dz / dt = vz - c we obtain the equation 
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F_ (I, t) = - + ++++(+)g] 

whose solution is of the form 

t 

@,I = V.-JO exp$ F_ (z_ (0 0 dt’, $+ = vt (f’) -c (2,. t’), P_ (to) = zO (3.12) 

to 

Formulas which coincide exactly with (3. ll), (3.12) yield an expression for {VI)* 
Expressions (3. ‘7) can then be used to find all the remaining quantities provided the 
stresses T,(l),TZv(r), T,,(l). to one side of the line of discontinuity are given. 

The quantities {T,}, (T..&,{T,,~~ at characteristics of the second type which satisfy 
(3.6) are given by the formulas 

Let us consider the special case where c depends only on t. We then have 

{VI = 0'10 [(TO + ~)/(Toexp q + $-)]“‘exp $, TZt = To exp y 

at the characteristics of the first type. 
This formula indicates that the velocity jump decreases monotonically with increas- 

in t, 
f 

and tends to zero as t--t 00.. 
t can be shown that in the other ipecial case where- c depends only on z the veloci- 

ty discontinuity also goes to zero as t+_oo. However, the initial discontinuity can in- 
crease for small times if T?, = T,, 1 z=. is large enough. For large T, and small t we 
have the asymptotic formula 

For example, if vo > 0, then the initial discontinuity at the characteristic Z+ (t) in- 
creases over a small time interval. Nevertheless, the magnitude of the discontinuity 
remains finite as T, tends to infinitj. 
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